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Introduction

This Mathematical Formaulae handbook has been prepared in response to a request from the Physics Consultative
Committee, with the hope that it will be useful to those studying physics. It is to some extent modelled on a similar
document issued by the Department of Engineering, but obviously reflects the particular interests of physicists.
There was discussion as to whether it should also include physical formulae such as Maxwell’s equations, etc., but
a decision was taken against this, partly on the grounds that the book would become unduly bulky, but mainly
because, in its present form, clean copies can be made available to candidates in exams.

There has been wide consultation among the staff about the contents of this document, but inevitably some users
will seek in vain for a formula they feel strongly should be included. Please send suggestions for amendments to
the Secretary of the Teaching Committee, and they will be considered for incorporation in the next edition. The
Secretary will also be grateful to be informed of any (equally inevitable) errors which are found.

This handbook was compiled by Dr John Shakeshaft and typeset originally by Fergus Gallagher, and currently by
Dr Dave Green, using the TeX typesetting package.

Version 2.1 October 2010.
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Physical Constants

Based on the “CODATA recommended values of the fundamental physical constants: 2006”, Mohr, P. J., Taylor,
B. N. & Newell, D. B., 2008, Reviews of Modern Physics, 80, pp633-730. (The figures in parentheses give the 1-
standard-deviation uncertainties in the last digits.)

speed of light in a vacuum c 2.997 92458 x 108 ms™1  (by definition)
permeability of a vacuum Lo 4rx 107" Hm™1 (by definition)
permittivity of a vacuum €0 1/;10c2 — 8.854 187 817... x 10 P2 Fm™~1
elementary charge e 1-602 176 487(40) x 107 1° C

Planck constant h 6-626 068 96(33) x 10734 Js

h/2m f 1-054 571 628(53) x 10734 J s

Avogadro constant Na  6-022 141 79(30) x 102 mol~!

unified atomic mass constant m, 1-660 538 682(83) x 102’ kg

mass of electron m.  9-109 382 15(45) x 103 kg

mass of proton m,  1.672 621 637(83) x 1072 kg

Bohr magneton eh/47tm, Ug 9-274 009 15(23) x 107243771

molar gas constant R 8:314 472(15) J K~ mol~!

Boltzmann constant Ks 1-380 650 4(24) x 1023 y K1
Stefan-Boltzmann constant o 5-670 400(40) x 108 wm—2 K™*
gravitational constant G 6-674 28(67) x 1011 N m? kg2

Other data

acceleration of free fall g 9-806 65 m s~ 2 (standard value at sea level)




1. Series

Arithmetic and Geometric progressions

n

AP. Sp=a+(a+d)+(a+2d)+---+[a+(n—1)d] = E[2a+ (n—1)d]

) n_1 1—1 a
GP. S,=atar+ar‘+.---+a" "t =a——, Seo = —— for|r| <1
1—r 1—r

(These results also hold for complex series.)
Convergence of series: the ratio test

Sh=uU;+uU;+Uz+---+uU, convergesas n — oo Iif nIim % <1

—00 n

Convergence of series: the comparison test

If each term in a series of positive terms is less than the corresponding term in a series known to be convergent,
then the given series is also convergent.

Binomial expansion

(14+x)"=14nx+ n(n2l— Ly + n(n — 13)|(n _2)x3+

If n is a positive integer the series terminates and is valid for all x: the term in x" is "C,x" or (r) where "C, =

m is the number of different ways in which an unordered sample of r objects can be selected from a set of
n objects without replacement. When n is not a positive integer, the series does not terminate: the infinite series is
convergent for |x| < 1.

Taylor and Maclaurin Series

If y(x) is well-behaved in the vicinity of x = a then it has a Taylor series,

B B dy u?d’y udddy
Y(X)—Y(a+u)—Y(a)‘f’U&‘FEW‘FaW‘F“'

where u = x — a and the differential coefficients are evaluated at x = a. A Maclaurin series is a Taylor series with
a=_0,
dy x?d?y x3d%

yO) =y +xgtoige T arae

Power series with real variables

2 n

e* =1+X+%+'--+%+--- valid for all x
x2 .x3 - X"
In(1+x):x—7+?+~~+(—1)”+1F+--- valid for -1 < x <1
e 4 e X x2  x* x8 .
COS X _#—1—E+E—a+--- valid for all values of x
) ei><_e—i>< 3 5 ]
sin X :%:x—x—+x—+--- valid for all values of x
2i 3! 51
1 2 T T
tan x =X+ x4+ —x>+ .- valid for - = < x < =
TRt 7 X<y
x xb
tan—1x :x—€+€—--- validfor -1 <x <1
) 1x3  1.3x%° .
sin~!x :x+§%+ﬁ%+~~ validfor -1 < x < 1




Integer series

N
Yhn 142434 +N=NNFTY

1

N
S n2=12422 43+ 4 N2 = N(N+125(2N—|—1)

1

N 2 2
S =128 13 AN = (12434 N2 = N (N4+1)

1

o (__1\n+1

;7< 1n) =1—%+%—%+---:In2 [see expansion of In(1 + x)]
o (_1)n+1

;(an)_l :1_%+%_%+ :77: [see expansion of tan~* x]
§1_,,1,1, 1, 7

~n2 T 4791 6

N

Sn(n+1)(n+2) =1.23+234+ - +N(N+1)(N+2) = N(N+1)(N4+2)(N+3)

1

This last result is a special case of the more general formula,

;n(n+1)(n+2)...(n+r): N(N+1)(N+2)r-;(2N+r)(N+r+1).

Plane wave expansion

exp(ikz) = exp(ikrcos @) = §(2I + 1)i'ji(kr)P(cos 8),

1=0
where Py(cos 8) are Legendre polynomials (see section 11) and j;(kr) are spherical Bessel functions, defined by

i(p) =4 /2—7;J|+1/2(p), with J;(x) the Bessel function of order | (see section 11).

2. Vector Algebra

If i, j, k are orthonormal vectors and A = Ai + Ayj + Ak then |A|* = A2 + A2 + AZ. [Orthonormal vectors =

orthogonal unit vectors.]

Scalar product

A-B=|A||B|coso where 6 is the angle between the vectors

Bx
= ABy+ AyBy + A,B, = [AAJA, | By]
B,

Scalar multiplication is commutative: A-B =B - A.

Equation of a line
A pointr = (X, Y, z) lies on a line passing through a point a and parallel to vector b if

r=a-+ Ab
with A a real number.




Equation of a plane

A pointr = (x,y,z) is on a plane if either

@r- d= |d|, where d is the normal from the origin to the plane, or

(b) % + y + z_ 1 where X, Y, Z are the intercepts on the axes.

Y Z

Vector product

AxB = n|A||B|sin 8, where 6 is the angle between the vectors and n is a unit vector normal to the plane containing

A and B in the direction for which A, B, n form a right-handed set of axes.

A x B in determinant form

i j k
A Ay A,
BX By BZ
Vector multiplication is not commutative: A x B = —B x A.
Scalar triple product
A)( Ay AZ
AxB-C=A-BxC=|Bx By B;|=—-AxC-B, etc
Cx C, C

Vector triple product

A x B in matrix form

0 —-A, Ay [B
A, 0 —Al|B
~Ay Ac O B,

Ax(BxC)=(A-C)B—(A-B)C, (AxB)xC=(A-C)B—(B-C)A

Non-orthogonal basis

A = Aje; + Azes + Ases
€y X €3

A1:€/'A where & = —— = _
€1 - (82 X 93)

Similarly for A; and As.

Summation convention
a = ai€j
a-b =ab;
(a x b)i = eijajbx

Eijkekim = dildjm — dimji

implies summationoveri=1...3

where ¢103 = 1; Eijk = —Eikj




3. Matrix Algebra

Unit matrices

The unit matrix | of order n is a square matrix with all diagonal elements equal to one and all off-diagonal elements
zero, i.e., (1)ij = &j. If Ais a square matrix of order n, then Al = IA = A. Also | = -1
I is sometimes written as I, if the order needs to be stated explicitly.

Products

If Aisa (n x I) matrix and B is a (I x m) then the product AB is defined by

|
(AB)ij = Y AiByj
k=1

In general AB # BA.

Transpose matrices

If A is a matrix, then transpose matrix A" is such that (AT)i; = (A)ji.

Inverse matrices

If A is a square matrix with non-zero determinant, then its inverse A 1 is such that AA™1 = A"tA = 1.

(A1), = transpose of cofactor of Aj;
n Al

where the cofactor of A;; is (—1)'*! times the determinant of the matrix A with the j-th row and i-th column deleted.

Determinants

If A is a square matrix then the determinant of A, |A| (= det A) is defined by

‘A‘ = z eijk...AliAZjASk e
i,jk,...

where the number of the suffixes is equal to the order of the matrix.

2x2 matrices

If A= (a b) then,
c d

. - T _(a C _17i d —b
|A| = ad — bc A_(b d) A _|A|<—c a)

Product rules
(AB...N)T=NT...BTAT
(AB...N)"*=N"1t...B!A! (if individual inverses exist)
|AB...N| = |A|[B|...|N]| (if individual matrices are square)

Orthogonal matrices

An orthogonal matrix Q is a square matrix whose columns g; form a set of orthonormal vectors. For any orthogonal
matrix Q,

Q'=Q", |Q=+1 QTisalsoorthogonal.




Solving sets of linear simultaneous equations

If A is square then Ax = b has a unique solution x = A~'b if A~* exists, i.e., if |A| # 0.
If A'is square then Ax = 0 has a non-trivial solution if and only if |A| = 0.

An over-constrained set of equations Ax = b is one in which A has m rows and n columns, where m (the number
of equations) is greater than n (the number of variables). The best solution x (in the sense that it minimizes the

error | Ax — b)) is the solution of the n equations ATAx = ATb. If the columns of A are orthonormal vectors then
x=ATb.

Hermitian matrices

The Hermitian conjugate of A is Al = (A")T, where A* is a matrix each of whose components is the complex
conjugate of the corresponding components of A. If A = AT then A is called a Hermitian matrix.

Eigenvalues and eigenvectors

The n eigenvalues A; and eigenvectors u; of an n x n matrix A are the solutions of the equation Au = Au. The
eigenvalues are the zeros of the polynomial of degree n, P,(A) = |A — Al|. If A is Hermitian then the eigenvalues
Ai are real and the eigenvectors u; are mutually orthogonal. |A — Al| = 0 is called the characteristic equation of the
matrix A.

TrA=Y A, also|Al=]]A.
i i
If S is a symmetric matrix, A is the diagonal matrix whose diagonal elements are the eigenvalues of S, and U is the
matrix whose columns are the normalized eigenvectors of A, then
U'su=A and S=UAUT.

If X is an approximation to an eigenvector of A then xTAx/(xTx) (Rayleigh’s quotient) is an approximation to the
corresponding eigenvalue.

Commutators
(A, B] = AB — BA
(A, B] = —[B.A]
(AB]T =[BT All
[A+B,C]=[A,C|]+[B,C|
[AB,C] =A[B,C]+[A,C|B
[

A, [B,C]]+[B,[C,A]]+[C,[A,B]]=0

Hermitian algebra

bt = (b3, b3,...)

Matrix form Operator form Bra-ket form
Hermiticity b*-A-c=(A-b)* ¢ /¢*0¢ - /(o¢)*¢ (|o|d)
Eigenvalues, A real Au; = A Oy = Ay Oli) = A |i)
Orthogonality U-uj=0 /lpi*lp,- —0 Giy=0  (i#1))
Completeness b= uu-b) o=Sui([vie) o=l
Rayleigh-Ritz
_— / oY
Lowest eigenvalue Ao < b-A-b A <L —— {¥[Ov)

b"-b Iz (W)




Pauli spin matrices

ol I EC A il AR A

ox0Oy = i0y, oy0; = ioy, 0,0y = ioy, 0x0x = 0y0y = 0,07 = |

4. \Vector Calculus

Notation

¢ is a scalar function of a set of position coordinates. In Cartesian coordinates
¢ = ¢(x,y,2); in cylindrical polar coordinates ¢ = ¢(p, @, z); in spherical
polar coordinates ¢ = ¢(r,6, p); in cases with radial symmetry ¢ = ¢(r).
A is a vector function whose components are scalar functions of the position
coordinates: in Cartesian coordinates A = iAx + jAy + kA, where Ay, Ay, A,
are independent functions of x, y, z.

. . im0 .0 0
In Cartesian coordinates V (‘del’) = Iax + jay + kaz =3

grad¢ = Vo, divA=V_ A curl A=V x A

Identities
grad(¢; + ¢2) = grad ¢1 + grad ¢ div(A; + Ay) =divA; + divA;

grad(¢1¢2) = ¢p1grad ¢, + ¢, grad ¢
curl(A, + A;) = curl A; +curl A,

div(¢pA) = ¢divA + (grad ¢) - A, curl(pA) = pcurl A+ (grad¢) x A

div(A; x Ay) = Az -curl Ay — Ag - curl A

curl(Ar x Az) = ArdivA; — Ay divA + (Az - grad)A; — (Ag - grad) A,
div(curl A) =0, curl(grad¢) =0

curl(curl A) = grad(div A) — div(grad A) = grad(div A) — V?A

zZ
T
0
<P
90 ~

grad(A; - Ay) = Ap x (curl Ay) + (Ar - grad)A; + Az x (curl Ag) + (A, - grad)A;




Grad, Div, Curl and the Laplacian

Cartesian Coordinates Cylindrical Coordinates Spherical Coordinates
Conve_rsionto . X=rcosesind y=rsingsin®
Cartesian X=pCOSp y=pSingp zZ=12 7 — rcos0
Coordinates
Vector A Adi + Ayj 4+ Ak AD+ AP + A2 AT+ AgD + A,p
. op. Jd¢p. J¢P o0p. 1ladp.. Jdp_. op.. 1dp~ 1 9¢ .
Gradient V¢ ax'+8yj+azk appqua(p(eraZz arr+r899+rsin98<p(p
1 9(r’Ay) 1 0Agsin@
Divergence oA, @ 0A,; 10(pA,) | 1A,  0A, 2 or rsin@ o0
V-A oX oy 0z p dp p 0 0z 1 0JA,
rsin@ do
. 1. . 1 ~ ~
R SCI L v 1e 15
3 9 9 p Y resing rsiné r
N Ay o dp o az ar 36 90
oy A, pA, A, A rAg  rA,sin@
. 19 rza—d) + #i sin Qa—d)
Laplacian PP P P 19 ( E)d)) N 1°¢p 0%¢p | rPor \ or r?sin@ 00 20
V20 @ oy o2 | pap\Pop) T 2o T 02 1 2
r2sin? 0 d¢?

Transformation of integrals

L = the distance along some curve ‘C’ in space and is measured from some fixed point.

S = asurface area

T = a volume contained by a specified surface

t = the unit tangent to C at the point P

n = the unit outward pointing normal

A = some vector function

dL = the vector element of curve (= t dL)

dS = the vector element of surface (= h dS)

Then /A.de:/A.dL
C C
and when A = V¢

[(v#)-dL= [ de

Gauss’s Theorem (Divergence Theorem)

When S defines a closed region having a volume t

/T(V.A)dT:/S(A.ﬁ)dS:/SA.dS

also

/T(Vd)) dT:/Sd)dS

/T(VXA)dT:/S

(A x A) dS




Stokes’s Theorem

When C is closed and bounds the open surface S,

/S(VXA)-dS:/CA-dL

also

/S(ﬁde))dS:/ccde

Green’s Theorem

/¢V¢~d8:/V~(¢V¢) dr
S T
= [V + (Vw)- (V)] dr

Green’s Second Theorem

[ wv2e—62p) dr= [ [5(Ve) — $(V4p)] - ds

5. Complex Variables

Complex numbers

The complex number z = x + iy = r(cos@ + isin9) = rel®2") where i> = —1 and n is an arbitrary integer. The

real quantity r is the modulus of z and the angle 9 is the argument of z. The complex conjugate of zis z* = x — iy =
r(cos@ —isin) =re % zz° = |z]> = x® 4+ y?

De Moivre’s theorem

(cos@ +isinf)" = e = cosnd + isinnd

Power series for complex variables.

z? n -
e’ :1+z+§+~~~+m+~~ convergent for all finite z
3 5 '
. z z -
sinz =z 3l + S convergent for all finite z
2 4
z z -
cosz =1- o1 + TR convergent for all finite z
zé zé
In(1+2)=z— St principal value of In(1 + z)
This last series converges both on and within the circle |z| = 1 except at the point z = —1.
tan 1z —2—2—3—1—2—5—---
B 3 5

This last series converges both on and within the circle |z| = 1 except at the points z = =i.

no_ nin—-1) , nn-1H(n-2) ,
(1+2)" =14nz+ 5 z° + 3 4+
This last series converges both on and within the circle |z| = 1 except at the point z = —1.




6. Trigonometric Formulae

cosec’ A —cot?’ A =1
2tan A

cos’A+sinA=1 sec’ A —tan’A =1

Sin2A = 2sin Acos A cos2A = cos? A — sin? A tan 2A =

1—tan’A’

cos(A + B) + cos(A — B)

sin(A+B) =sin AcosB + cos AsinB cos AcosB = 5
. . . . A—B)— A+ B
cos(A £ B) = cos Acos B F sin AsinB sinAsing — 08! )2005( +B)
tan A =tanB . in(A+B in(A—B
tan(A +B) = A ans sin AcosB — SIN(A+B) +sin( )
1Ftan AtanB 2
sinA +sinB = 2sinA+BcosA_B coszA:M
2 2 2
. . A+B . A-B ) 1-— 2A
SiNA—sinB — 2cos 21> sin sin? A — -G0S A
2 2 2
COSA +cosB = 2COSA+BCOSA_B cos® A = 3C0S A + coS3A
2 2 4
cosA—cosB:—2sinA;_BsinA;B sin3A:w

Relations between sides and angles of any plane triangle

In a plane triangle with angles A, B, and C and sides opposite a, b, and c respectively,
a b

- = — = — = diameter of circumscribed circle.
sin A sinB sinC

a2 =b?+4c? —2bccos A

a=bhcosC+ccosB

b2 4 ¢ — a?
2bc

A—B a—>b C

2 Ta2

COSA =

tan

wheres=-(a+b+¢)

N =

1 . 1 . 1 .
area = EabsmC = EbcsmA = 5easin B= \/s(s —a)(s—b)(s—rc),

Relations between sides and angles of any spherical triangle

In a spherical triangle with angles A, B, and C and sides opposite a, b, and ¢ respectively,
sina _ sinb  sinc
sinA  sinB  sinC

cosa = coshcosc +sinbsinccos A

cosA = —cosBcosC +sinBsinCcosa

10



7. Hyperbolic Functions

2 4

_1 X —x\ _ X X
COShX_§<e+e )_1+E+E+
o1 X
Slnhx_§<e € )_X+§+§+

coshix = cos x
sinhix =isinx

sinh x
tanhx = ———
cosh x
cosh x
cothx = —
sinh x

cosh?x — sinh?x = 1

X
sinh x
Relations of the functions
sinhx = —sinh(—x)
coshx = cosh(—x)
tanhx = —tanh(—x)
. 2tanh (x/2) tanh x
sinhx = > =
1 —tanh” (x/2) /1 _ tanh?x
tanhx =1/1— sech?x

cothx = 1/cosech?x + 1
sinh(x/2) = ,/%

coshx —1 sinh x
tanh(x/2) = sinhx ~ coshx—+1

sinh(2x) = 2sinh x cosh x

cosix = cosh x
sinix = isinh x

sechx = ———
cosh x

cosechx = —
sinh x

For large positive x:

eX
coshx ~ sinhx — >

tanhx — 1
For large negative x:

—X
coshx ~ —sinhx —

2
tanhx — —1
sechx = sech(—x)
cosech x = — cosech(—x)
cothx = —coth(—x)

1+ tanh? (x/2)

1

coshx = 5 =
1 — tanh” (x/2)

sechx =1/1—tanh?®x
cosechx = \/coth?x — 1

cosh(x/2) = \/%

tanh(2x) = 2ta7nh>;
1+ tanh“x

cosh(2x) = cosh?x + sinh?x = 2cosh?x — 1 = 1 + 2sinh?x

sinh(3x) = 3sinh x + 4sinh®x

_ 3tanhx + tanh® x
1+ 3tanh®x

tanh(3x)

\/1 — tanh?x

cosh 3x = 4 cosh® x — 3 cosh x

valid for all x

valid for all x

11



sinh(x £ y) = sinhxcoshy 4 cosh xsinhy

cosh(x £ y) = coshxcosh y &+ sinh xsinhy

tanh x + tanhy

tanh(x ty) = 1+ tanhxtanhy

5(

sinhx 4+ sinhy = 2sinh %(x + y) cosh %(x -y) coshx + coshy = 2cosh 5

sinhx — sinhy = 2 cosh %(x—i— y) sinh %(x —y) coshx —coshy = 2sinh %(x—i— y)sinh%(x -

l1+tanh(x/2) .,
1Ftanh(x/2)
sinh(x +y)

cosh xcoshy

sinh(x +y)

sinh xsinhy

sinhx £ coshx =

tanhx + tanhy =

cothx +cothy = +

Inverse functions

sinh*1§ =1In (fozj%j for —oo < X < o0
cosh™ l;( <X+ i 2—a2> forx > a
tanh 2 % % (:ti) for x? < a?
coth ™+ X % (x+a> for x2 > a2

sech1 = (; 1/ ) foro<x<a
cosech1 = (; 1/ ) for x # 0

8. Limits

n°x" — 0asn — oo if |X| < 1 (any fixed c)
x"/nl — 0asn — oo (any fixed x)

(1+x/n)" — e*asn — oo, xInx - 0asx — 0

If f(a) =g(a) =0 then Lm’; ) = F(a) (’'Hopital’s rule)

—ag(x) ¢'(a)

l(x—ky)cosh1 X —

y)

y)

12



9. Differentiation

., , uy/  uv—uv
(uv)' =u'v+uv, " ——
v

(uv)(n) — u(n>v + nu(nfl)v(l) + . _|_ nCrU(nir)V(” + e + uv(n)

I
where "C, = <I:> "

Leibniz Theorem

i(sin X) =cosX

dx
&(cosx) = —sinx
ax (tanx) = sec?x
ax (secx) = secxtanx
d 2
&(cotx) = — cosec” X
d
&(cosec X) = — cosec x cot x

Standard forms

%(sinh Xx) = coshx
d .
&(cosh X) =sinhx
d 2
&(tanh X) =sech”x
d
ax (sechx) = —sechxtanhx
% (cothx) = —cosech?x
% (cosech x) = — cosech x coth x

10. Integration

X
n _ _
/x dx—n+1+c forn # -1
1
;dx =Inx+c /Inxdx =x(Inx—1)+c
/eaXdX ZEeax—i—C /xeaxdx:eax(f—%)—kc
a a a
2
X 1
Inxdx = — [(Inx= =
/x nxdx == (nx 2)+c
1 1 X
/az—kx2 dx =g un (5)+C
1 1 1
/ dx :—tanh‘1(§)+c:—ln arx) ¢ for x? < a?
a? — x? a a 2a _
1 1 1 (X 1 X—a 2 2
/xz—az dx = acoth (a)+c—2aln<x+a)+c forx2 > a
X -1 1
dx = +c forn#£1
/(xziaz)” 2(n—1) (x* £a?)" ! #

/L dx :%In(xzia2)+c

x? + a?
/ 1
Va2 — x2
1
/\/xzia2
X
/y/xziaz

dx = sin™?! (g) +c
dx =1In (x+\/x2ia2) +c
dx = vx2+a2+c¢

/\/a2 —x2dx = % {xx/a2 —x2+a’sin? (g)} +c

13



/o 1+x (14 x)xP

[o¢]
/ COS
0

exp(—

dx = mcosec prt

x?/20%) dx = ov/2n

—
8

—00

oo

0
/sinxdx = —COSX+¢C

/cosxdx =sinx+¢

/tanxdx =

/cosecx dx = In(cosecx — cotx) + ¢

—In(cosx) + ¢

/secx dx =In(secx +tanx) +c

/cotx dx =In(sinx)+c

[Tt ax= 1 7
_/O sm(x)dx_2 5

00 Ix3x5x---
/ x"exp(—x?/20?) dx =

(n—1)o"V2n

/sinhxdx =coshx+c¢
/coshxdx =sinhx+¢c

/tanh xdx = In(coshx)+c

/cosech x dx = In[tanh(x/2)] + ¢

/sechx dx =2tan"*(e*) +c

/cothx dx = In(sinhx)+c

. : sin(m—n)x  sin(m+ n)x
/smmxsmnx dx = —
2(m—n) 2(m+n)
/cosmxcosnx dx = sin(m — n)x sm(m+n)x+c
2(m—n) 2(m+n)
Standard substitutions
If the integrand is a function of: substitute:

(a® — x?) or /a2 — x2
(x? + a%) or v/x2 + a2
(x? —a%) or v/x2 — a2

X =asinfdorx =acosf
X = atanfor x = asinh@
X = asecOorx =acosho

forp<1

for n > 2 and even

forn > 1 and odd

if m? # n?

if m? # n?

If the integrand is a rational function of sin x or cos x or both, substitute t = tan(x/2) and use the results:

: 1-t2
sinX = —— COSX = —— =
14t 1+t
If the integrand is of the form:  substitute:
/ dx px +q = u?
(ax+b)/px+q
dx ax +b = 1

/(ax+b)\/px2+qx+r

2 dt

1+4+t%

14



Integration by parts
b

b b
/udv:uv —/vdu
a a a

Differentiation of an integral

If f(x, «) is a function of x containing a parameter « and the limits of integration a and b are functions of « then

d b db da bla) 9
ﬁ/aw f(x,) dx = F(b,a) 5 ~ f(a,a)a—i—/am = f(x,@) dx.

Special case,

o [ roydy =100,

Dirac é-‘function’

S(t—1) = Zi [ explio(t— ) de.

TTJ-00
If f(t) is an arbitrary function of t then / S(t—1)f(t) dt = f(7).
5(t) = 0ift 0, also/ 5(t) dt = 1

Reduction formulae
Factorials

nt=n(n-1)(n—2)...1, 0'=1.

Stirling’s formula for large n:  In(n!) & nlnn —n.

Forany p > —1,/ xPe X dx = p/ xP~te ™ dx = p. (=) =/, (12)! = vy, etc.
0 0
F 1 /1 P(1 - x)7d Plq!
orany p,g>—1, [ xP(1—-x)9dx= ——+.
y P4 0 (p+q+1)!

Trigonometrical

If m, n are integers,

n—1

m-—1 (/2 . /2
/ sin™ 20 cos" 0 do = / sin™ 6 cos" 26 do
0 m-+nJjo

m+n
and can therefore be reduced eventually to one of the following integrals

/2
/ sin™ @ cos" @ d9 =
0

/2 1 /2 /2 /2 T
/ sin® cosf do = =, / sin6df =1, / cos6do =1, do = —.
0 2 0 0 0 2
Other
o0 n-1 1 /n 1
Ifl, = /0 x" exp(—ocxz) dx then |I,= %In,g, lo = S\ Iy = o2

15



11. Differential Equations

Diffusion (conduction) equation

W _ o
ﬁ—de)

Wave equation

1 0%y
Vip = S
v ¢ ot?

Legendre’s equation

d’y , dy
—_ 2 —_ =
(1—x )dx2 2de +1(1+1)y =0,
. . . 1 d' 2 I - ,
solutions of which are Legendre polynomials P(x), where Pj(x) = o Lax (x* — 1), Rodrigues’ formula so

Po(x) =1, Py(X) = X, P2(X) = %(3X2 — 1) etc.

Recursion relation

PiI(x) =

—_— =

[(21 = 1)xPy_1(x) — (1 = 1)Pi_2(x)]
Orthogonality

1 2
/1 P|(X)P|/(X) dx = 2|——|—15”/

Bessel’s equation

d’y  _dy
2 2 _m2\y —
dX2+de+(x m*)y =0,

solutions of which are Bessel functions Jn(x) of order m.

X

Series form of Bessel functions of the first kind

o (1 k 2 m+2k

k=0
The same general form holds for non-integer m > 0.

(integer m).

16



Laplace’s equation

V2u=0

If expressed in two-dimensional polar coordinates (see section 4), a solution is
u(p, ) = [Ap" + Bp "] [Cexp(inp) + D exp(—ing)]

where A, B, C, D are constants and n is a real integer.

If expressed in three-dimensional polar coordinates (see section 4) a solution is
u(r,0, @) = [Ar' + Br-"Y]p"[Csinme + D cos mg]

where | and m are integers with | > |m| > 0; A, B, C, D are constants;

Im|
7d(c(c])ls 6)} P(cos9)

is the associated Legendre polynomial.

PM(cos @) = sinm g {

PY(1) = 1.
If expressed in cylindrical polar coordinates (see section 4), a solution is

u(p, @, z) = Jn(np) [Acosme + Bsinme| [Cexp(nz) + D exp(—nz)]
where m and n are integers; A, B, C, D are constants.

Spherical harmonics

The normalized solutions Y"(6, ¢) of the equation

1 9 (. .0 1 0 7om "
[—sineﬁ (smeﬁ) + —sinzea—q)z] Y+ I1(14+1)Y"=0

are called spherical harmonics, and have values given by

21+ 1 (I — |m|)! - (-=1)™ form>0
Y6, p) = F— L PM(cos0) M =
r(6.¢) \/ G (T mpi) (C0s6) e form < 0

. 1 3 3 . ;
|.e.,Y8:\/E, Yf:\/ﬁcose, Yf1:$\/§sm9 et etc.

Orthogonality

Y ™MY dQ = 8y Sy
4nt

12. Calculus of Variations

/

b
The condition for | = / F(y,y’,x) dx to have a stationary value is oF = d B_F/ , Where y
a ay dx E)y

Euler-Lagrange equation.

dy

= I This is the

17



13. Functions of Several Variables

Ifp =f(x,y,2...) then g—i’ implies differentiation with respect to x keeping vy, z, . . . constant.
_ 94 9Py, L 99 ~ s 95, 99
d¢—axdx+aydy+azdz+ and 6¢ = ax6X+8y6y+8262+

when the variables kept

where X,V,z,... are independent variables. a_¢ is also written as (a_¢) or a_¢
y 2

oX oX oX

constant need to be stated explicitly.

: : Py ¢
If ¢ is a well-behaved function then X3y ~ dyox etc.
If p = f(x,y),
&),y (&),5),6).-
axy(a_x>' ox ), \ 9y, \ 09/, '
9/,

Taylor series for two variables

If ¢(x,y) is well-behaved in the vicinity of x = a, y = b then it has a Taylor series

_ _ W 0 1[0 I’ | 2P0
<l>(x,y)—<l>(a+u,b+v)—<1>(a,b)+uax+vay+2_I (u ™ +2uvaxay+v 3 +

where X = a 4+ u, y = b 4+ v and the differential coefficients are evaluatedatx =a, y=b

Stationary points

: B : : op AP iy Pd PP :
A function ¢ = f(x, y) has a stationary point when x ay 0. Unless v 3y = X0y 0, the following
conditions determine whether it is a minimum, a maximum or a saddle point.
- 0% 0%
M . — >0, — >0,
inimum v >0, or P > 2 2 2
P b nd S ay? ~ \axoy
Maximum: — <0, 0or —5 <0,
ox y
2P % 3¢\’
Saddle point: Wa—yz < (ax ay)

¢ Py ¢ . o : . -
If —=-== = 0 the character of the turning point is determined by the next higher derivative.
X ay oxdy

Changing variables: the chain rule

If = f(x,y,...) and the variables x, y, . . . are functions of independent variables u, v, . .. then

dp  dPpox  JPay
du  oxou ' dyau
3¢ _ 99 x , dpdy
v 0Xxdv 9y dv

etc.
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Changing variables in surface and volume integrals — Jacobians

If an area A in the X, y plane maps into an area A’ in the u, v plane then

x
du Jv
f(x,y)dxd :/ f(u,v)Jdudv where J=
[ 1y dxay = [ f(uv) 2y oy
du Jv
The Jacobian J is also written as gg)u( z; The corresponding formula for volume integrals is
ou dv Iw
/f(x,y,z)dxdydz:/ f(u,v,w)Jdudvdw  where now J= dy 9y 9y
% d ou dv Iw
oz o
ou dv Iw

14. Fourier Series and Transforms

Fourier series

If y(x) is a function defined in the range —mt < x < 7t then

M M’
y(X) & Co+ Y, CmCOSMX + Y Spsinmx
m=1 m=1

where the coefficients are

1 /= d
CO_Zr[ny(x) X

cm_l/ y(x) cos mx dx (m=1,...

J-n

sm:E/ y(x) sinmx dx (m=1,..
TJ-m

with convergence to y(x) as M, M’ — oo for all points where y(x) is continuous.

Fourier series for other ranges

Variable t, range 0 < t < T, (i.e., a periodic function of time with period T, frequency w = 27t/T).

y(t) = Co + Y Cm COSMawt + Y’ s sin mat

where
w [T w [T w [T .
Co = E/o y(t)dt, cm= %/0 y(t)cosmwt dt, s, = ;/0 y(t) sinmwt dt.
Variable x, range 0 < x <L,
2mmx . 2mmx
y(X) & Co + Y, Cm COS 3 + Y smsin

where

1 st 2 [t 2mmx 2 [t . 2m7nx
CO_E/O y(x) dx, cm—E/O y(x) cos 3 dx, Sm—E/O y(x) sin L dx.
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Fourier series for odd and even functions

If y(x) is an odd (anti-symmetric) function [i.e., y(—x) = —y(x)] defined in the range —t < x < , then only

. . . . . 2 [m . . . . .
sines are required in the Fourier series and sy, = %/ y(x)sinmx dx. If, in addition, y(x) is symmetric about
0

/2

x = 7t/2, then the coefficients sp, are given by s, = 0 (for m even), s, = j—r/ y(x) sinmx dx (for m odd). If
0

y(x) is an even (symmetric) function [i.e., y(—x) = y(x)] defined in the range —t < x < m, then only constant

: S : . 1 2 [T .
and cosine terms are required in the Fourier series and ¢y = %/ y(x) dx, cm = %/ y(x) cosmx dx. If, in
0 0

addition, y(x) is anti-symmetric about x = g then ¢y = 0 and the coefficients ¢, are given by ¢, = 0 (for m even),
4 [m/2
Cm = —/ y(x) cosmx dx (for m odd).
0

[These results also apply to Fourier series with more general ranges provided appropriate changes are made to the
limits of integration.]

Complex form of Fourier series

If y(x) is a function defined in the range —mt < x < 7t then

M . 1 T .
y(x) = Y Cne™, Cpu= Zr/ y(x)e "™ dx
™M -

with m taking all integer values in the range +M. This approximation converges to y(x) as M — oo under the same
conditions as the real form.

For other ranges the formulae are:
Variable t, range 0 < t < T, frequency w = 27/T,
w T

et —imwt
o o y(t)e dt.

y(t) - z Cm eimLUt, Cm =

Variable X/, range 0 < x’ < L,
1

o0 . , L . ,
y(x’) — gocm giZmnx /L’ Cm = E /0 y(x’) e—|2mm</L dx’.
Discrete Fourier series

If y(x) is a function defined in the range —mt < x < 7t which is sampled in the 2N equally spaced points x, =
nx/N [n=—(N—1)...N], then

Y(Xn) = Co + €1 COS Xp + €2 COS 2Xp + - - - + Cn—1 COS(N — 1)Xn + Cn €OS NXp
+ 51SiNXp + 525N 2Xp + - - - + Sn—1 SIN(N — 1)X, + SN Sin NXp
where the coefficients are

1

Co = NZY(Xn)
1

cm:NZy(xn)cosmxn (m=1,...,N—-1)
1

N = WZy(xn)cos NXp

1 .
sm:NZy(xn)smmxn (m=1,...,N—1)

1 .
SN = 53 Y y(xn) sin Nxq

each summation being over the 2N sampling points X.

20



Fourier transforms

If y(x) is a function defined in the range —oo < x < oo then the Fourier transform y(w) is defined by the equations
VO = 5 [ g@etdo,  Fw) = [ yme

If w is replaced by 2ntf, where f is the frequency, this relationship becomes
v = [ s(fear, (= [~ yme e

If y(t) is symmetric about t = 0 then

y(t) = %/w J(@)coswtde,  §(@) =2 [ y(t)cosatdt
0 0
If y(t) is anti-symmetric about t = 0 then
y(t) = %/ y@sinatde, @) =2 [ yRsinwtdt
0 0
Specific cases
Yy y
a
/ ™~ A
-7 +7T \/ \/
y(t)=a, |t|<7T . , - _ o sinwt .
—0, Jt|>1 (‘Top Hat’), y(w) = 2a o = 2atsinc(wr)
where sinc(x) = smx(x)
Yy y
t // @
-7 +7T
y(t) =a(l—t|/7), [t/ <7|  (qon-tooth’ Jlw) = 22 g — arsine? (Y7
—0 | >t (‘Saw-tooth’), V(w) = wZT(l CoswTt) = arsinc ( > )
Yy y
, 4 .
y(t) = exp(—t?/t3) (Gaussian), Y(w) = toy/mexp (—w?t)/4)
y(t) = f(t)e'“*t (modulated function), Y(w) = f(w — wo)
y(t)= > &(t—mt) (sampling function) y(w) = 2771 Y, 8(w —2nn/T)
m=—o0 n=—o0
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Convolution theorem

Ifz(t) = /m x(1)y(t — 1) dr = /m x(t—1)y(t) dr = x(t) * y(t) then 2(w) = X(w) J(w).

—00 —00

Conversely, Xy = X * ¥/ 2.

Parseval’s theorem

/Oo y* (1) y(t) dt 1 /Oo V¥ (w) Y(w) dw (if ¥ is normalised as on page 21)

o L

Fourier transforms in two dimensions
V(K) = /V(r)e‘”"r dr

= / 27trV (r) Jo(kr) dr if azimuthally symmetric
0

i I i i Examples
Fourier transforms in three dimensions _
V —ikr 43 v(n) )

V (k) :/V(r)e dir 1 [

_Am /O@ V(r) rsinkrdr ifspherically symmetric 4rtr K2

“ ° e—/\r 1
V() = o [Vio e dk w | e
(271) VV(r) ikV (k)
VAV(r) | —KV(K)
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15. Laplace Transforms

If y(t) is a function defined for t > 0, the Laplace transform y(s) is defined by the equation

y() = £y} = [ ey at

Function y(t) (t>0) Transform y(s)
5(t) 1
1
o(t) S
n!
tn Sn+l
1 1 Tt
v 2w
t~ 1 \/i
s
1
—at
¢ (s+a)
. w
sin wt 1
s
cos wt 5 D)
sinh wt & iuwz)
s
cosh wt =)
e~ y(t) y(s +a)
y(t—1)0(t—1) e T y(s)
dv
ty(t) —d—z
dy -
o sy(s) - y(0)
d"y ny(s) _ sn-ty(o) _ -2 | 9Y] L. [d"y
e "Y(9) ="y (0) =" F | | - G|
. =
/ y(7) dt ¥s)
0 S
t
/ x(1) y(t — 1) dt
0 — —
X(s) Y(s)

/tx(t— ) y(7) dt
0

[Note that if y(t) = 0 for t < 0 then the Fourier transform of y(t) is y(w) = y(iw).]

Delta function

Unit step function

Convolution theorem
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16. Numerical Analysis

Finding the zeros of equations

If the equation is y = f(x) and x, is an approximation to the root then either

f(x
Xni1 = Xn — % (Newton)
n

Xn — Xn-1
f(Xn) - f(anl)
are, in general, better approximations.

or, Xnt1 = Xn — f(xn) (Linear interpolation)

Numerical integration of differential equations

it 3

ax = f(x,y) then
Y1 = Yn +hf(xn, yn) whereh =Xn.i1 —Xn (Euler method)
PULnG  Yns1 = Yo +NF0Xn. yn) (improved Euler method)
h[f(Xn, Yn) + f(Xni1, Y5
then  yny1=vyn+ [f(xn. yn) 2( ntL Yni1)]

Central difference notation

If y(x) is tabulated at equal intervals of x, where h is the interval, then 8y, 1/, = Yn41 — Yn and
5%Yn = 8Yn11/2 — 8Yn_1/2

Approximating to derivatives

(dy) VR LE I VS Ll L Y O¥n T OYn-s, where h = Xn11 — Xn
n

dx h h 2h
d_zy __ Yn+1 — 2Yn+ Yn1 _ 5%Yn
axz ) h2 h2

Interpolation: Everett’s formula

_ 1 _ 1
y(X) = y(xo + 6h) ~ Byp + Oy; + a9(92 —1)82y0 + a9(92 —1)8%y; + - -

where 6 is the fraction of the interval h (= x,11 — Xn) between the sampling points and 6 = 1 — 6. The first two
terms represent linear interpolation.

Numerical evaluation of definite integrals
Trapezoidal rule

The interval of integration is divided into n equal sub-intervals, each of width h; then
b 1 1
/ f(x) dx ~h [czf(a) +f(xa)+--+ (X)) +- -+ Ef(b)
a
whereh = (b —a)/nand xj = a+ jh.

Simpson’s rule

The interval of integration is divided into an even number (say 2n) of equal sub-intervals, each of width h =
(b —a)/2n; then

/ab f(x) dx~ ~[f(a) +4f(x1) + 2f(x2) + 4f(X3) + - - + 2 (Xan—2) + 4f(Xon—1) + f(b)]

w| =

24



Gauss’s integration formulae

These have the general form / ) dx ~ Zc,y

Forn=2: x;==05773; ¢i=1,1 (exact for any cubic).
Forn=3: x;=—0-7746,0-0,0-7746; c; = 0-555,0-888, 0-555 (exact for any quintic).

17. Treatment of Random Errors

Sample mean X = %(xl + X2+ Xn)
Residual: d=x-X
Standard deviation of sample: s = —(d2 +dZ .- d2)?
f
1
Standard deviation of distribution: o ~ df + d3 d2)1/2
\/n—( 2 )
Standard deviation of mean: Om = % = ! (d2 4 d3 + ---d2)/2
n n(n —1)

| |
F
|
]

Result of n measurements is quoted as X + op,.

Range method

A quick but crude method of estimating o is to find the range r of a set of n readings, i.e., the difference between
the largest and smallest values, then

o~ —.

Vvn

This is usually adequate for n less than about 12.

Combination of errors
IfZ=2Z(A,B,...) (with A, B, etc. independent) then

2 (0Z \° . [(9Z \°
(02)" = a_AUA + BBUB + -

So if

() Z=A+B=+C, (02)? = (0a)* + (08)% + (0¢)?
W z-moerns (%) (%) (3)

(i) Z=A", %:m%

(iv) Z=InA, UZ:‘T_AA

(V) Z=-expA, %—UA
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18. Statistics

Mean and Variance

A random variable X has a distribution over some subset x of the real numbers. When the distribution of X is
discrete, the probability that X = x; is P;. When the distribution is continuous, the probability that X lies in an
interval 6x is f(x)&x, where f(x) is the probability density function.

Mean p = E(X) = Y Pix or/ (x) dx.

Variance 02 = V(X) = E[(X — 1)?] = 3 Pi(x; — 1)? or /(x — )2 (x) dx.

Probability distributions

Error function:  erf(x) = —/ eV dy
Binomial: = < > "“Xwhereq=(1—p), wu=np,o’=npg,p<Ll
; . _ P‘ —u
Poisson: f(x) = e and o’ =p
( —u)z}
Normal: f(x) = —ex —_
() oV 2m P [ 20°

Weighted sums of random variables

If W = aX + bY then E(W) = aE(X) + bE(Y). If X and Y are independent then V(W) = a?V (X) + b2V (Y).
Statistics of a data sample X4, ..., Xn

1
Sample mean X = — i
p X= =2

Sample variance s*> = %Z(xi —X)? = <EZX,2) — %% = E(x?) — [E(x)]?

Regression (least squares fitting)

To fit a straight line by least squares to n pairs of points (x;, y;), model the observations by y; = a 4+ 3(xj — X) + €j,

where the ¢; are independent samples of a random variable with zero mean and variance 0.

. 1 - — 1 - -
Sample statistics: s2 = - Y (xi—%)?% sy = - Si—Vy)? shy = - Y (xi —X)(yi — V).

2
. oz - o~ n . .
Estimators: @ =V, B = —; E(Yatx) = & + B(x — X); 6% = (residual variance),
s2 n—2
h idual variance — ~ TR LR
where residual variance = — S{yi—a—Bxi—X)} =55 — 2
’\2 82
Estimates for the variances of & and [3’ are o and e’
X
SZ
. - ~ Xy
Correlation coefficient: p =r = .
SxSy
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