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The system known to physics as the simple pendulum is an imaginary,
idealized object. It comprises a bob which swings without losing energy
in a vertical two-dimensional plane on a massless, inextensible string which
always remains taut.

As we shall see, the mathematics even of this seemingly innocuous prob-
lem is rich and complex; in general, the equations governing the motion are
non-linear and cannot be solved analytically. However, for small angles of
swing, the pendulum will approximate the behaviour of another fictional
system—the Harmonic Oscillator—which we can determine exactly.
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To obtain the equation of motion, we use an
angular version of Newton’s second law:

T = Iθ̈, (1)

where T is the torque, I the moment of iner-
tia, and θ̈ the angular acceleration.
In this case, the moment of inertia is I = ml2,
and The return torque produced by gravity is

T = −(mg sin θ)l

when the angular displacement is θ.

We can see that in this case (1) becomes

ml2θ̈ = −mgl sin θ

θ̈ = −g
l

sin θ (2)

1 Small angles: Simple Harmonic Motion

For small angles, θ � 1, we make the approximation sin θ ≈ θ. This is based
on the standard series expansion for sin θ, which is

sin θ = θ − θ3

3!
+
θ5

5!
− θ7

7!
+ . . . ,

and allows us to see that, to first order, the error which this introduces is
proportional to θ3.

Substituting this approximation into the equation of motion (2) yields a
second-order ordinary differential equation which we already know how to
solve: it has the form of the harmonic oscillator (3).

θ̈ +
g

l
θ = 0

ψ̈ + ω2
0ψ = 0 (3)



It is easy to verify, by differentiation and substitution, that (3) is satisfied
by an expression of the form

ψ(t) = A cos(ω0t+ φ) (4)

where A is any constant length (the amplitude) and φ is any constant angle
(the initial phase). A quantity which varies as ψ does with time is said to
vary harmonically, and a vibration which it describes is termed harmonic
motion. ω0 is the angular frequency of such a vibration.

The controlling quantity in (4) is the phase angle ω0t + φ, sometimes
simply called the phase. The phase angle increases uniformly with time,
but situations with their phase angles differing by any multiple of 2π are
physically indistinguishable. This means that the harmonic motion is peri-
odic: a sequence of repeated cycles. The interval of repetition is known as
the period T given by ω0T = 2π, and the reciprocal of this is the number of
cycles per unit time, which we call the frequency ν0 = 1/T = ω0/2π.

In our case, identifying the equation of motion we have written with the
form for the harmonic oscillator gives

ω0 =

√
g

l
,

and so we can see that the time period T for one oscillation of the pendulum
is given by

T = 2π

√
l

g
. (5)

1.1 Pendulum rule of thumb

Rearranging (5) to have l as the subject of the formula, we find that

l =
g

π2
T 2

4
.

So long as we measure in metres and seconds, we can say that g ≈ π2, so

l ≈ T 2

4
,

“the length of a pendulum (in metres) is approximately one quarter of the
square of the time period (in seconds),” which is a handy rule-of-thumb for
everyday use.

2 Arbitrary angles: Elliptic Integrals

As we have already seen, it is not possible to turn the equation of motion
for the simple pendulum into that of a harmonic oscillator exactly. This
difficulty arises because gravity always acts vertically, whereas the motion
of the pendulum is rotational; the return torque is not proportional to θ,
but has a more complicated dependence, meaning the system is non-linear.

We shall now press ahead and see how far we can progress with the true
equation of motion (2) without approximating.
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Firstly, we multiply both sides of the original equation by θ̇.

θ̈ = −g
l

sin θ

θ̇θ̈ = −g
l
θ̇ sin θ

We can then use the chain rule in reverse to identify that d
dt(θ̇

2) = 2θ̇θ̈

and d
dt cos θ = −θ̇ sin θ, yielding

1

2

d

dt
(θ̇2) = ω2

0

d

dt
cos θ.

Now integrating both sides with respect to t, we see that

θ̇2 = 2ω2
0 cos θ + c, (6)

where c is a constant of integration. This constant can be found by noting
that at the maximum extent of the oscillation, which we shall henceforth
denote by θ0, the bob comes to an instantaneous halt, and so θ̇ = 0. Putting
these values into (6) gives c = −2ω0 cos θ0, and so (6) becomes

θ̇ = ω0

√
2(cos θ − cos θ0)

1
2 . (7)

This is a separable first-order ordinary differential equation, and so we
ought now to proceed by rearranging the equation so that the terms in θ
and t appear on opposite sides of the equation (i.e. are separated) and
integrating: ∫

dθ

ω0

√
2(cos θ − cos θ0)

1
2

=

∫
dt.

Finding the solution θ(t) that satisfies (7) depends only on the ease with
which the integrals on each side of the equation above can be evaluated –
one is trivial, the other cannot be done analytically.

Let us press on by choosing to integrate definitely over a quarter period
(chosen since θ < θ0 ⇒ θ̇ > 0).∫ T

4

0
dt =

∫ θ0

0

dθ

ω0

√
2(cos θ − cos θ0)

1
2

T

4
=

1

ω0

√
2

∫ θ0

0

dθ

(cos θ − cos θ0)
1
2

(8)

We shall now proceed to turn the above expression into an equivalent
form which has been studied in some detail. Firstly, we make use of the
double angle formula

cos 2A = cos2A− sin2A

= 1− 2 sin2A

to rewrite the integral in (8) as∫ θ0

0

dθ(
1− 2 sin2 θ

2 − 1 + 2 sin2 θ0
2

) 1
2

=

∫ θ0

0

dθ

√
2
(

sin2 θ0
2 − sin2 θ

2

) 1
2

.
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We now make a change of variable θ → φ, where φ is defined by

sin
θ

2
= sin

θ0
2

sinφ.

Differentiating both sides of this with respect to θ,

d

dθ
sin

θ

2
=

d

dθ
sin

θ0
2

sinφ

1

2
cos

θ

2
=

d

dφ

dφ

dθ
sin

θ0
2

sinφ

=
dφ

dθ
sin

θ0
2

cosφ

dθ cos
θ

2
= 2dφ sin

θ0
2

cosφ,

and we also note that where θ = θ0, sinφ = 1⇒ φ = π
2 .

Using these facts allows us to make the substitution, rewriting the inte-
gral as ∫ π

2

0

2 sin θ0
2 cosφ dφ

√
2
(

sin2 θ0
2 − sin2 θ0

2 sin2 φ
) 1

2
cos θ2

=

∫ π
2

0

√
2 sin θ0

2 cosφ dφ

sin θ0
2

(
1− sin2 φ

) 1
2
(
cos2 θ2

) 1
2

=

∫ π
2

0

√
2 cosφ dφ

cosφ
(
1− sin2 θ

2

) 1
2

=
√

2

∫ π
2

0

dφ(
1− sin2 θ0

2 sin2 φ
) 1

2

. (9)

The integral in (9) is known as a complete elliptic integral of the first
kind, denoted in mathematics by K, which has been studied in some detail
by mathematicians. The integral is defined in many texts as

K(m) =

∫ π
2

0

dθ(
1−m sin2 θ

) 1
2

=

∫ 1

0

dt

[(1− t2) (1−mt2)]
1
2

,

and it can be expressed as a power series

K(m) =
π

2

∞∑
n=0

[
(2n)!

22nn!2

]2
m2n =

π

2

[
1 +

(
1

2

)2

m2 +

(
1 · 3
2 · 4

)2

m4 +

(
1 · 3 · 5
2 · 4 · 6

)2

m6 + · · ·

]
,

which is valid for |m| < 1. In our case, m = sin2 θ0
2 . Our conclusion,

therefore, is that

T

4
=

1

ω0

√
2

√
2 K(m)

T = T0
K(m)

π/2
.
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