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Abstract

As we shall see, not all things in physics are created equal; in or-
der to properly describe the world around us, we physicists have to
resort to more than one type of mathematical object to describe phys-
ical situations. You should already be familiar with scalar and vector
quantities, so we shall begin with some revision of their mathemati-
cal properties, before introducing and investigating tensors of higher
order.

1 Scalars

Quantities such as mass, energy, charge, length or temperature are known
as scalars. As you will already know, they each have a magnitude, but
no direction, and this means that they may be treated as simple numbers
algebraically.

We shall discover that it is of some importance that scalars remain un-
changed or invariant under a rotation of our coordinate frame. A scalar S
will in a rotated system be equal to S’, where

S =S, (1)

Simple examples of scalars from mathematics are the length of a vector, and
the dot product of two vectors. It follows that any physically important
quantities formed from a scalar product are also scalars, and perhaps the
most immediate of these is energy, either as potential energy or as an energy
density (e.g. F-dr, eE-dr, D-E, B-H, p-B), but others, such as the angle
between two directed quantities, are also important.

2 Vectors

Vectors have both a size and a direction, and you will be familiar with this
from your studies.

Let’s first look at a type of object which is not a vector. We could
describe rotations of rigid bodies in the following way. A certain rotation is
represented by an arrow, with its direction along the axis of rotation in a
sense given by the right hand rule, and length given by the rotation angle



in radians. Apparently then, a rotation is a vector according to the size
and direction definition. However, you can show that the arrows we have
associated with rotations are not vectors!, since they do not behave like
vectors. Take a book, and rotate it by 90° around the z axis, then 90°
around the y axis. Starting from exactly the same orientation, repeat these
operations, but this time about the y axis and then the x axis. The final
orientations of the book are different, but we know that, for vectors, the
order in which they are added together does not matter (we say that vector
addition is commutative).

We are clearly in need of a better definition of a vector, since simply
having a size and a direction is not enough for an object to be a vector. Let
us now consider the idea of a vector as a set of components — three in a
three dimensional space. To talk about components, we need a coordinate
system, and we see that we can pick any from an infinite variety (even if
we stick with Cartesian axes, there are an uncountable infinity of rotated
axes). A vector consists of thee components in each coordinate system. We
can find the components in another system, of course, by taking projections,
meaning that the new components will be definite combinations of the old
components. This allows us to decide whether a physical quantity is really a
vector or not.

Mathematically, we could define any transformation laws between coor-
dinate systems, so long as they allow components in one system to be made
into a set of components for all other systems. However, when dealing with
physical entities, we are not free to define its components in various coordi-
nate systems, since they are defined by physical fact. We again see now why
our rotation arrows were not vectors: if we treat such an arrow as a vector
and take components of it, these will not represent rotations which can be
combined to give the original rotation. The vector looking superficially like
the arrow we defined is not a correct mathematical description of the physical
entity (rotation) which we are trying to describe.

It may seem obvious that all relations between physical quantities, that
are the quantitative descriptions of physical process, must be independent
of the measuring scale and the frame of reference used. However, we can
turn this argument around: since physical results must obey those laws of
symmetry meaning that they will be independent of the choice of coordinate
system, what does this imply about the nature of quantities involved in the
description of physical processes?

The fact that a physical relationship can be expressed as a vector equa-
tion assures us that the relationship is unchanged by a mere rotation of the
coordinate system. That is the reason why vectors are so useful in physics.

We shall now investigate how components in one coordinate system are
related to those in another coordinate system for vectors. We start in a
coordinate system with basis vectors along the z, y and z axes. In many
books, these are written as i, j, k, but here [ am going to use e, es, e3 so

LOf course, we do define rotations this way, but they are not ‘honest’ vectors in the
usual sense. Examples of such vectors are the torque 7, angular momentum L, angular
velocity w and magnetic field B. They are known as azial vectors or pseudovectors.
Ordinary vectors, such as position r, force F, momentum p, electric field E, and so forth,
are known as polar vectors.



that results can be easily generalized to any number of dimensions. We are
going to examine the vector x, which has components x1, zo, x3:

X = r1€] + T9€y + X363 = E x€;, (2)

where in the final form the sum is over the dimensions of the space.
We now introduce a new basis €, €/, €}, which is related to the old one by
a rotation, keeping the origin fixed. Each of the vectors €] may be expressed
in terms of the original coordinate set as follows:
e'l = 81181 + Sgleg + 53163
e, = Size; + Syey + Syes (3)
e} = Sizer + Sazes + Size;

The vector x can be related to either of the coordinate systems by means
of components

x = xe] + rqe, + xhey = r1e) + 19y + T3€s.
Taking the dot product of this equation with €/, we get

x-€e] =1 =rie; - €] +1re, - €] + x3€3 - €]
=r1e; - (S1ie; + Saie; + Ssie3) +
To€y - (S1ie + Sorep + S31e3) +
r3es - (Siiey + Sores + Ssie3)
] =S1171 + Sa179 + Ss173.
Similarly, by dotting x into €] and e}, we get

!
Ty = S1971 + So29 + Ss013,

!
Ty = S13%1 + Sa3wg + S3373,

which are known as the transformation equations from the coordinate system
ey, e, e3 to €, €, e;. They may be more concisely written in matrix
notation. If we denote the matrix with elements S;; as S, then the new basis
is related to the old one by

e;- = Z Sij€i, (4)
i
and the components x; and x; are related by
v =Y (S"iu;. (5)
J
In the special case that the transformation is a rotation, the transformation

matrix S is orthogonal and so the inverse matrix S~! is the same as the
transpose matrix ST, so

T; = Z (S)ija; = Z Sji- (6)
J



3 Tensors

Tensors are simply a generalization of scalars and vectors. In fact, scalars and
vectors are themselves tensors of order (or rank?) zero and one respectively.
In three-dimensional space a scalar has one (or 3°) component, and a vector
has 3 (or 3!) components; in general, a tensor of order n in D dimensions has
D" components. Let us look at an example of where we might encounter a
second-order tensor, having nine components, in a physical application.

Think of a beam carrying a load. Stresses and strains are set up in the
material of the beam, which enable it to bear the load. If you imagine cutting
the beam in two by a plane perpendicular to its length, you will realize that
there is a force per unit area on the material on one side of the cut from the
material on the other side (this is what is keeping the beam from snapping;
there is, of course, and equal and opposite pressure on the other side of the
cut). This force is a vector, and so it has components 0,,, 04, 04, where the
first subscript x emphasizes that this is a force across a plane perpendicular
to the x direction. Similarly, if we were to make a cut perpendicular to
the y direction, we should find a force per unit area across this plane with
components oy, 0y, 0y, and finally across a plane perpendicular to the z
direction there is a force per unit area with components o,;, 0.y, 0,,. At
some point in the material, we have a set of nine quantities, each a component
of a force acting on one of three orthogonal planes, which could be displayed
as a matrix:

Oyz Oyy Oyz | - (7)
O_ZI O_Zy O-ZZ

This is a second-order tensor known as the stress tensor. The components
Oz, Oyy and o, are pressures or tensions, and the others are shear forces
(per unit area). For example, o, is a force per unit area in the x direction
acting across a plane perpendicular to the z direction.

We therefore expect a second-order tensor to have nine coordinates (in
three dimensions) in every rectangular coordinate system. Let us construct a
second-order tensor to find out what happens to its components when trans-
forming from one coordinate system to another. Our very simple example is
formed from the components of two vectors, U and V:

UiVi UiV UiV
UV UpVy UsVs (8)
UsVi U3V UsVs

These are the components of a second-order tensor which we shall denote

by UV (note: no dot or cross). Since U and V are vectors, their components
in a rotated coordinate system are, by (5):

U]; = ZakiUi, VE/ = Zalj‘/}.
i J

Hence the components of the second-order tensor UV are

UV = ZakiUi Zaljvj = ZakialjUiVj7 (9)
i J i,J

2In some books you will see order, and in others, rank; the two terms are equivalent.
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which allows us to write the form for a general second-order tensor 7;; trans-
forming to a coordinate system in which it is written as 7},, given by

T =) awayTy. (10)
i

Equation (10) generalizes immediately. For example, a fourth-order Carte-
sian tensor is defined by 3* or 81 components T}, in every rectangular
coordinate system, which transform to a rotated coordinate system by the
equation

o/zﬂwé - Z Aai0g; Oy @s T ijh1 - (11)
ijkl

3.1 Einstein Summation Convention

As a simplification of notation, it is customary to omit the summation signs
in equations like (2), (4), (5) and (6), and simply understand that summation
is carried out in such expressions over any repeated subscript. Thus

a;a; Or @ja; O Gypay Means ai + a3 + a3;

Q505 Means a;1a1; + G202, + a;303.

The repeated index which is summed over is know as a dummy index.
Since it disappears, like a variable of integration, it doesn’t matter what
letter is used for it.

4 Uses of tensors

In this section, some physical applications of tensors are given, albeit briefly.
First-order tensors are already familiar as vectors, and so we shall concentrate
on second-order tensors, starting with an example taken from mechanics.

4.1 Rigid body rotation

If a rigid body is rotating about a fixed axis, then L = Jw is a correct vector
equation, where L is the angular momentum, [ is the moment of inertia
about the rotation axis, and w is the angular velocity. As indicated by the
equation, L and w are parallel vectors, and [ is a scalar.

In general, where the rotation axis is not fixed, the angular velocity and
the angular momentum are not parallel. If the equation L = [w is to be true,
I cannot be a scalar; it must instead be some quantity which, multiplied by w,
gives a vector in a different direction. In fact, in general, I is a second-order
tensor. Written out in full Cartesians, the inertia tensor for a continuous
body would have the form

J(W*+22)pdV — [aypdV — [@zpdV
| = [I;] = — [zypdV  [(z* +2?)pdV [yzpdV . (12)
[ xzpdV [yzpdV [(2? +y*)pdV



where p = p(z,y,2) is the mass distribution and dV stands for dzdydz
(the integrals are to be taken over the whole body). The diagonal elements
of this tensor are called the moments of inertia and the off-diagonal elements
without the minus signs are called the products of inertia.

4.2 Polarization of light

In an isotropic medium the electric polarization P is a vector parallel to the
electric field E, that is, P = yE, where x is a constant. For anisotropic
materials such as crystals, this may no longer be true, and again we need
a mathematical quantity which, and again we need a mathematical object
which gives a vector in a different direction when multiplied by a vector.

A similar equation relates the magnetic susceptibility to the magnetic
field, and the electrical conductivity to the electric field. Usually these are
found to be symmetric second-order tensors.

4.3 Elasticity

In the general case, not only are the stress and strain not parallel, they are
not even vectors, but are themselves second-order tensors, and the quantity
which replaces Y is a fourth-order tensor.

4.4 Relativity

As we have already pointed out, tensors readily generalize to spaces of higher
dimensionality. The most notable example of this in physical theory are the
more abstract four dimensional space-time of special and general relativity.
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